Bohr-Rogosinski type inequalities for concave univalent functions
نویسندگان
چکیده
In this paper, we generalize and investigate the Bohr-Rogosinski inequalities property for subfamilies of univalent functions defined on unit disk D:={z∈C:|z|<1} which maps to concave domain, i.e., domain whose complement is a convex set. All results are proved be sharp.
منابع مشابه
Sufficient Inequalities for Univalent Functions
In this work, applying Lemma due to Nunokawa et. al. cite{NCKS}, we obtain some sufficient inequalities for some certain subclasses of univalent functions.
متن کاملBohr and Rogosinski Abscissas for Ordinary Dirichlet Series
We prove that the abscissas of Bohr and Rogosinski for ordinary Dirichlet series, mapping the right half-plane into the bounded convex domain G ⊂ C are independent of the domain G. Furthermore, we obtain new estimates about these abscissas. 1. Preliminaries Let us recall the theorem of H.Bohr [19] in 1914. Theorem 1.1. If a power series
متن کاملHermite-Hadamard Type Inequalities for MφA-Convex Functions
This article deals with the different classes of convexity and generalizations. Firstly, we reveal the new generalization of the definition of convexity that can reduce many order of convexity. We have showed features of algebra for this new convex function. Then after we have constituted Hermite-Hadamard type inequalities for this class of functions. Finally the identity has been revealed for ...
متن کاملOn Fejér Type Inequalities for (η1,η2)-Convex Functions
In this paper we find a characterization type result for (η1,η2)-convex functions. The Fejér integral inequality related to (η1,η2)-convex functions is obtained as a generalization of Fejér inequality related to the preinvex and η-convex functions. Also some Fejér trapezoid and midpoint type inequalities are given in the case that the absolute value of the derivative of considered function is (...
متن کاملInequalities of Ando's Type for $n$-convex Functions
By utilizing different scalar equalities obtained via Hermite's interpolating polynomial, we will obtain lower and upper bounds for the difference in Ando's inequality and in the Edmundson-Lah-Ribariv c inequality for solidarities that hold for a class of $n$-convex functions. As an application, main results are applied to some operator means and relative operator entropy.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2023
ISSN: ['0022-247X', '1096-0813']
DOI: https://doi.org/10.1016/j.jmaa.2022.126845